Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.228
Filtrar
1.
Drug Des Devel Ther ; 18: 1247-1262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645988

RESUMO

Purpose: Sinomenine hydrochloride (SH) is used to treat chronic inflammatory diseases such as rheumatoid arthritis and may also be efficacious against Immunoglobulin A nephropathy (IgAN). However, no trial has investigated the molecular mechanism of SH on IgAN. Therefore, this study aims to investigate the effect and mechanism of SH on IgAN. Methods: The pathological changes and IgA and C3 depositions in the kidney of an IgAN rat model were detected by periodic acid-Schiff (PAS) and direct immunofluorescence staining. After extracting T and B cells using immunomagnetic beads, we assessed their purity, cell cycle phase, and apoptosis stage through flow cytometry. Furthermore, we quantified cell cycle-related and apoptosis-associated proteins by Western blotting. Results: SH reduced IgA and C3 depositions in stage 4 IgAN, thereby decreasing inflammatory cellular infiltration and mesangial injury in an IgAN model induced using heteroproteins. Furthermore, SH arrested the cell cycle of lymphocytes T and B from the spleen of IgAN rats. Regarding the mechanism, our results demonstrated that SH regulated the Cyclin D1 and Cyclin E1 protein levels for arresting the cell cycle and it also regulated Bax and Bcl-2 protein levels, thus increasing Cleaved caspase-3 protein levels in Jurkat T and Ramos B cells. Conclusion: SH exerts a dual regulation on the cell cycle and apoptosis of T and B cells by controlling cell cycle-related and apoptosis-associated proteins; it also reduces inflammatory cellular infiltration and mesangial proliferation. These are the major mechanisms of SH in IgAN.


Assuntos
Apoptose , Linfócitos B , Proliferação de Células , Glomerulonefrite por IGA , Morfinanos , Linfócitos T , Morfinanos/farmacologia , Morfinanos/química , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/patologia , Animais , Apoptose/efeitos dos fármacos , Ratos , Proliferação de Células/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Masculino , Relação Dose-Resposta a Droga , Modelos Animais de Doenças , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Humanos , Células Cultivadas
2.
Food Funct ; 15(8): 4079-4094, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38563230

RESUMO

Gastritis is a common disease characterized by gastric ulcers and severe bleeding. Excessive daily alcohol consumption can cause acute gastritis, impacting individuals' quality of life. This study aims to explore the protective effects of different ethanol-fractional polysaccharides of Dendrobium officinale (EPDO) on acute alcohol-induced gastric injury in vivo. Results showed that EPDO-80, identified as a ß-glucan, exhibited significant anti-inflammatory properties in pathology. It could reduce the area of gastric mucosal injury and cell infiltration. EPDO-80 had a dose-effect relationship in reducing the levels of malondialdehyde and cyclooxygenase-2 and decreasing the levels of inflammation mediators such as tumor necrosis factor α. More extensively, EPDO-80 could inhibit the activation of the TNFR/IκB/NF-κB signaling pathway, reducing the production of TNF-α mRNA and cell apoptosis in organs. Conversely, EPDO-80 could promote changes in the gut microbiota structure. These findings suggest that EPDO-80 could have great potential in limiting oxidative stress and inflammation mediated by inhibiting the NF-κB signaling pathway, which is highly related to its ß-glucan structure and functions in gut microbiota.


Assuntos
Dendrobium , Etanol , Gastrite , NF-kappa B , Polissacarídeos , Dendrobium/química , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Masculino , Camundongos , NF-kappa B/metabolismo , NF-kappa B/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Extratos Vegetais/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Substâncias Protetoras/farmacologia
3.
Food Funct ; 15(8): 4021-4036, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38584465

RESUMO

Several mechanisms underlying nephrolithiasis, one of the most common urological diseases, involve calcium oxalate formation, including oxidative stress, inflammatory reactions, fibrosis, pyroptosis, and apoptosis. Although lycopene has strong antioxidant activity, its protective effects against CaOx-induced injury have not yet been reported. This study aimed to systematically investigate the protective effects of lycopene and explore its mechanisms and molecular targets. Crystal deposition, renal function, oxidative stress, inflammatory response, fibrosis, pyroptosis, and apoptosis were assessed to evaluate the renoprotective effects of lycopene against crystal formation in a CaOx rat model and oxalate-stimulated NRK-52E and HK-2 cells. Lycopene markedly ameliorated crystal deposition, restored renal function, and suppressed kidney injury by reducing oxidative stress, apoptosis, inflammation, fibrosis, and pyroptosis in the rats. In cell models, lycopene pretreatment reversed reactive oxygen species increase, apoptotic damage, intracellular lactate dehydrogenase release, cytotoxicity, pyroptosis, and extracellular matrix deposition. Network pharmacology and proteomic analyses were performed to identify lycopene target proteins under CaOx-exposed conditions, and the results showed that Trappc4 might be a pivotal target gene for lycopene, as identified by cellular thermal shift assay and surface plasmon resonance analyses. Based on molecular docking, molecular dynamics simulations, alanine scanning mutagenesis, and saturation mutagenesis, we observed that lycopene directly interacts with Trappc4 via hydrophobic bonds, which may be attributed to the PHE4 and PHE142 residues, preventing ERK1/2 or elevating AMPK signaling pathway phosphorylation events. In conclusion, lycopene might ameliorate oxalate-induced renal tubular epithelial cell injury via the Trappc4/ERK1/2/AMPK pathway, indicating its potential for the treatment of nephrolithiasis.


Assuntos
Apoptose , Fibrose , Licopeno , Nefrolitíase , Estresse Oxidativo , Piroptose , Ratos Sprague-Dawley , Solanum lycopersicum , Licopeno/farmacologia , Nefrolitíase/metabolismo , Nefrolitíase/tratamento farmacológico , Animais , Estresse Oxidativo/efeitos dos fármacos , Ratos , Piroptose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Masculino , Solanum lycopersicum/química , Humanos , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/química , Linhagem Celular , Rim/efeitos dos fármacos , Rim/metabolismo , Inflamação/metabolismo , Substâncias Protetoras/farmacologia
4.
Chin J Nat Med ; 22(4): 307-317, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658094

RESUMO

Ulcerative colitis (UC), a prevalent form of inflammatory bowel disease (IBD), may result from immune system dysfunction, leading to the sustained overproduction of reactive oxygen species (ROS) and subsequent cellular oxidative stress damage. Recent studies have identified both peroxisome proliferator-activated receptor-γ (PPARγ) and endoplasmic reticulum (ER) stress as critical targets for the treatment of IBD. Oroxyloside (C22H20O11), derived from the root of Scutellariabaicalensis Georgi, has traditionally been used in treating inflammatory diseases. In this study, we investigated the molecular mechanisms by which oroxyloside mitigates dextran sulfate sodium (DSS)-induced colitis. We examined the effects of oroxyloside on ROS-mediated ER stress in colitis, including the protein expressions of GRP78, p-PERK, p-eIF2α, ATF4, and CHOP, which are associated with ER stress. The beneficial impact of oroxyloside was reversed by the PPARγ antagonist GW9662 (1 mg·kg-1, i.v.) in vivo. Furthermore, oroxyloside decreased pro-inflammatory cytokines and ROS production in both bone marrow-derived macrophages (BMDM) and the mouse macrophage cell line RAW 264.7. However, PPARγ siRNA transfection blocked the anti-inflammatory effect of oroxyloside and even abolished ROS generation and ER stress activation inhibited by oroxyloside in vitro. In conclusion, our study demonstrates that oroxyloside ameliorates DSS-induced colitis by inhibiting ER stress via PPARγ activation, suggesting that oroxyloside might be a promising effective agent for IBD.


Assuntos
Colite , Sulfato de Dextrana , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL , PPAR gama , Espécies Reativas de Oxigênio , Animais , PPAR gama/metabolismo , PPAR gama/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Masculino , Humanos , Substâncias Protetoras/farmacologia
5.
Sci Total Environ ; 927: 171973, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547995

RESUMO

The aim of this study was to investigate the alleviating effect of selenomethionine (SeMet) on aflatoxin B1 (AFB1)-induced testicular injury in rabbits. Twenty-five 90-d-old rabbits were randomly divided into 5 groups (the control group, the AFB1 group, the 0.2 mg/kg SeMet + AFB1 group, the 0.4 mg/kg SeMet + AFB1 group and the 0.6 mg/kg SeMet + AFB1 group). After 1 d of the experiment, the SeMet-treated groups were fed 0.2 mg/kg SeMet, 0.4 mg/kg SeMet, or 0.6 mg/kg SeMet daily, and the remaining two groups were fed a normal diet for 30 d. On Day 31, all rabbits in the model group and the three treatment groups were fed 0.5 mg/kg AFB1 for 21 d. The levels of testosterone (T), luteinizing hormone (LH) and follicle stimulating hormone (FSH) in rabbit plasma were detected. Rabbit semen was collected, and its quality was evaluated. Pathological changes in rabbit testes were observed by hematoxylin-eosin (HE) staining. The expression of related proteins in testicular tissue was detected by immunohistochemistry, immunofluorescence and western blot (WB) analysis. Enzyme-linked immunosorbent assays (ELISAs) were used to detect oxidative stress-related indices and inflammatory factors in testicular tissue. The results showed that AFB1 can induce oxidative stress and inflammation to activate the p38/MSK/NF-κB signalling pathway, mediate apoptosis, inhibit the proliferation and differentiation of testicular cells, destroy the integrity of the blood-testis barrier (BTB) and the normal structure of the testis, and reduce the content of sex hormones and semen quality. SeMet pretreatment significantly alleviated testicular injury oxidative stress, and the inflammatory response in rabbits. Thus, we demonstrated that SeMet restores AFB1-induced testicular toxicity by inhibiting the p38/MSK/NF-κB signalling pathway. In addition, in this study, 0.4 mg/kg SeMet had the most impactful effect.


Assuntos
Aflatoxina B1 , Selenometionina , Testículo , Animais , Masculino , Coelhos , Aflatoxina B1/toxicidade , Selenometionina/farmacologia , Testículo/efeitos dos fármacos , Testosterona/sangue , Substâncias Protetoras/farmacologia , Doenças Testiculares/prevenção & controle , Doenças Testiculares/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Hormônio Luteinizante/sangue , Apoptose/efeitos dos fármacos
6.
Neuroscience ; 540: 1-11, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242279

RESUMO

Mitochondrial dysfunction, which results in the overproduction of oxygen free radicals, is a crucial mechanism underlying cerebral ischemia-reperfusion injury. 4'-Hydroxyl-2-substituted phenylnitronyl nitroxide (HPN), which is an antioxidant and free radical scavenger, can effectively scavenge oxygen free radicals, suggesting its potential as a protective agent against cerebral ischemia-reperfusion injury. In this study, we investigated the effects of HPN on mitochondrial function and apoptosis following cerebral ischemia/reperfusion injury in rats. Healthy adult SD rats were chosen as the experimental subjects, and the rat ischemia/reperfusion injury model was generated using the modified Zea Longa method. The administration of HPN significantly enhanced the activity of endogenous antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). Additionally, HPN effectively preserved the morphology and function of mitochondria, reduced the protein and gene expression of Caspase-3 and Bax, increased the protein and gene expression of Bcl-2, mitigated neuronal apoptosis, improved neurological deficits, and decreased the volume of cerebral infarction. Of interest, the protective effect on brain tissue was more evident with increasing doses of HPN. These findings indicate that HPN can serve as an effective protective agent against cerebral ischemia-reperfusion injury.


Assuntos
Isquemia Encefálica , Doenças Mitocondriais , Óxidos de Nitrogênio , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Sequestradores de Radicais Livres/farmacologia , Ratos Sprague-Dawley , Estresse Oxidativo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Antioxidantes/farmacologia , Apoptose , Superóxido Dismutase/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Substâncias Protetoras/farmacologia , Reperfusão , Radicais Livres
7.
J Pineal Res ; 76(1): e12931, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38083808

RESUMO

Because the chronobiotic and cytoprotective molecule melatonin diminishes with age, its involvement in postmenopausal and senescence pathology has been considered since long. One relevant melatonin target site in aging individuals is bone where melatonin chronobiotic effects mediated by MT1 and MT2 receptors are demonstrable. Precursors of bone cells located in bone marrow are exposed to high quantities of melatonin and the possibility arises that melatonin acts a cytoprotective compound via an autacoid effect. Proteins that are incorporated into the bone matrix, like procollagen type I c-peptide, augment after melatonin exposure. Melatonin augments osteoprotegerin, an osteoblastic protein that inhibits the differentiation of osteoclasts. Osteoclasts are target cells for melatonin as they degrade bone partly by generating free radicals. Osteoclast activity and bone resorption are impaired via the free radical scavenger properties of melatonin. The administration of melatonin in chronobiotic doses (less than 10 mg daily) is commonly used in clinical studies on melatonin effect on bone. However, human equivalent doses allometrically derived from animal studies are in the 1-1.5 mg/kg/day range for a 75 kg human adult, a dose rarely used clinically. In view of the absence of toxicity of melatonin in phase 1 pharmacological studies with doses up to 100 mg in normal volunteers, further investigation is needed to determine whether high melatonin doses have higher therapeutic efficacy in preventing bone loss.


Assuntos
Reabsorção Óssea , Melatonina , Animais , Adulto , Humanos , Melatonina/farmacologia , Melatonina/metabolismo , Osso e Ossos/metabolismo , Osteoclastos , Envelhecimento , Substâncias Protetoras/farmacologia , Ritmo Circadiano
8.
Ecotoxicol Environ Saf ; 269: 115810, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100849

RESUMO

BACKGROUND: Jujuboside B (JuB) is the main bioactive saponin component of Chinese anti-insomnia herbal medicine Ziziphi Spinosae Semen, which has been reported to possess varied pharmacological functions. Even though it has been traditionally used to treat inflammation- and toxicity-related diseases, the effects of JuB on acetaminophen (APAP) overdose-induced hepatotoxicity have not been determined yet. METHODS: C57BL/6 J mice were pre-treated with JuB (20 or 40 mg/kg) for seven days before APAP (400 mg/kg) injection. After 24 h of APAP treatment, serum, and liver tissues were collected to evaluate the therapeutic effects. To investigate whether the Nrf2-STING signaling pathway is involved in the protective effects of JuB against APAP-induced hepatotoxicity, the mice received the DMXAA (the specific STING agonist) or ML385 (the specific Nrf2 inhibitor) during the administration of JuB, and Hematoxylin-eosin staining, Real-time PCR, immunohistochemical, and western blot were performed. RESULTS: JuB pretreatment reversed APAP-induced CYP2E1 accumulations and alleviated APAP-induced acute liver injury. Furthermore, JuB treatment significantly inhibited oxidative stress and the pro-inflammatory cytokines, as well as alleviated hepatocyte apoptosis induced by APAP. Besides, our result also demonstrated that JuB treatment upregulated the levels of total Nrf2, facilitated its nuclear translocation, upregulated the expression of HO-1 and NQO-1, and inhibited the APAP-induced STING pathway activation. Finally, we verified that the beneficial effects of JuB were weakened by DMXAA and ML385. CONCLUSION: Our study suggested that JuB could ameliorate APAP-induced hepatic damage and verified a previously unrecognized mechanism by which JuB prevented APAP-induced hepatotoxicity through adjusting the Nrf2-STING pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Saponinas , Animais , Camundongos , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Camundongos Endogâmicos C57BL , Transdução de Sinais , Estresse Oxidativo , Fígado , Saponinas/farmacologia , Saponinas/uso terapêutico
9.
Life Sci ; 337: 122343, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104860

RESUMO

The liver is the most important organ for biological transformation in the body and is crucial for maintaining the body's vital activities. Liver injury is a serious pathological condition that is commonly found in many liver diseases. It has a high incidence rate, is difficult to cure, and is prone to recurrence. Liver injury can cause serious harm to the body, ranging from mild to severe fatty liver disease. If the condition continues to worsen, it can lead to liver fibrosis and cirrhosis, ultimately resulting in liver failure or liver cancer, which can seriously endanger human life and health. Therefore, establishing an rodent model that mimics the pathogenesis and severity of clinical liver injury is of great significance for better understanding the pathogenesis of liver injury patients and developing more effective clinical treatment methods. The author of this article summarizes common chemical liver injury models, immune liver injury models, alcoholic liver injury models, drug-induced liver injury models, and systematically elaborates on the modeling methods, mechanisms of action, pathways of action, and advantages or disadvantages of each type of model. The aim of this study is to establish reliable rodent models for researchers to use in exploring anti-liver injury and hepatoprotective drugs. By creating more accurate theoretical frameworks, we hope to provide new insights into the treatment of clinical liver injury diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Hepatopatia Gordurosa não Alcoólica , Humanos , Fígado/metabolismo , Hepatopatias/patologia , Cirrose Hepática/patologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Substâncias Protetoras/farmacologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
10.
Aging (Albany NY) ; 15(23): 14372-14383, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097341

RESUMO

Cisplatin has the potential to cause kidney and reproductive organ injuries, prompting the search for protective agents against cisplatin-induced toxicity. Melatonin, an antioxidant hormone, has shown promise in mitigating oxidative stress in various organs. However, its protective effects on cisplatin-induced kidney and reproductive injuries have not been extensively investigated. The aim of this study was to explore the potential protective effects of melatonin on cisplatin-induced kidney and reproductive injuries when administered in combination with gemcitabine in mice. Male C57BL/6 mice were subjected to a seven-week treatment with gemcitabine plus cisplatin, with or without melatonin intervention. The testis, epididymis, and kidney were assessed through histological analysis and measurement of blood parameters. Treatment with cisplatin led to a significant reduction in testicular weight, histological abnormalities, and alterations in reproductive hormone levels. Melatonin exhibited a slight protective effect on the testis, with higher doses of melatonin yielding better outcomes. However, melatonin did not reverse the effects of cisplatin on the epididymis. Administration of melatonin before and during treatment with cisplatin plus gemcitabine in mice demonstrated a modest protective effect on testicular injuries, while showing limited effects on epididymal injuries. Serum creatinine levels in the group treated with gemcitabine plus cisplatin treatment and high-dose melatonin approached those of the control group, indicating a protective effect on the kidney. These findings underscore the potential of melatonin as a protective agent against cisplatin-induced kidney and reproductive injuries and emphasize the need for further research to optimize its dosage and evaluate its long-term effects.


Assuntos
Cisplatino , Melatonina , Camundongos , Masculino , Animais , Cisplatino/toxicidade , Melatonina/farmacologia , Melatonina/metabolismo , Gencitabina , Camundongos Endogâmicos C57BL , Testículo/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Rim/patologia , Substâncias Protetoras/farmacologia
11.
Food Chem Toxicol ; 182: 114121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890761

RESUMO

Deoxynivalenol (DON) is one of the most prevalent mycotoxins in feed, which causes organ toxicity in animals. Therefore, reducing DON-induced organ toxicity can now be accomplished effectively using protective agents. This review provides an overview of multiple studies on a wide range of protective agents and their molecular mechanisms against DON organ toxicity. Protective agents include plant extracts, yeast products, bacteria, peptides, enzymes, H2, oligosaccharides, amino acids, adsorbents, vitamins and selenium. Among these, biological detoxification of DON using microorganisms to reduce the toxicity of DON without affecting the growth performance of pigs may be the most promising detoxification strategy. This paper also evaluates future developments related to DON detoxification and discusses the detoxification role and application potential of protective agents. This paper provides new perspectives for future research and development of safe and effective feed additives.


Assuntos
Micotoxinas , Tricotecenos , Suínos , Animais , Tricotecenos/metabolismo , Micotoxinas/análise , Bactérias/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/metabolismo , Ração Animal/análise , Contaminação de Alimentos/análise
12.
Biochem Biophys Res Commun ; 678: 115-121, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37633181

RESUMO

Loss of hair cells can lead to irreversible sensorineural hearing loss. Therefore, hair cell preservation is critical for hearing. Mitochondrial derived peptides (MDPs) are bioactive peptides and prominent members of this family are humanin (HN) and the mitochondrial-open-reading frame of the twelve S c (MOTS-c). The protective roles of HN and MOTS-c in age-related diseases and in various tissues exposed to cellular stresses have been demonstrated. The involvement of MDPs in the inner ear remains to be investigated. Therefore, we determined the expression of rattin, the homolog of humanin, in inner ear tissues. Then, we found that HN and MOTS-c showed a significant protective effect on hair cells in organ of Corti explants exposed to gentamicin. Treatment with HN decreased gentamicin-induced phosphorylation of AKT, whereas treatment with MOTS-c increased phosphorylation of AMPKα in explants. Our data indicate that MDPs exert a protective function in gentamicin-induced hair cell damage. Therefore, MDPs may contribute to design new preventive strategies against hearing loss.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Substâncias Protetoras , Substâncias Protetoras/farmacologia , Gentamicinas/efeitos adversos , Cabelo , Fatores de Transcrição
13.
Pak J Pharm Sci ; 36(3): 819-827, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37580931

RESUMO

Gastric ulcer is a common gastrointestinal disease caused by excessive gastric acid secretion, which has been recognized as one of the most common causes of morbidity and mortality in the world. The skin of Rana chensinensis is rich in collagen and many previous studies have shown that it has certain bioactivity. Therefore, we extracted and purified collagen with a molecular weight less than 10000 Da from the skin of Rana chensinensis, and studied its gastric protective mechanism through the model of ethanol-induced gastric ulcer in Balb/c mice. The results showed that through macroscopic observation and significantly reduced ulcer index, it was proved that PCRCS could protect gastric mucosa and alleviate the damage of ethanol to gastric mucosa. PCRCS reduced ethanol-induced oxidative stress by boosting depleted SOD levels and dramatically lowering MDA levels, as well as significantly reducing lipid peroxidation. Additionally PCRCS (Protein Chinese Rana chesinensis Skin) additionally decreased the launch of inflammatory mediators TNF-α and IL-6 and more desirable the content material of protective elements NO and PGE2 in gastric mucosa. Based on these findings, we believe that PCRCS has potential stomach protective effects on ethanol-induced gastric ulcer, which may be achieved by inhibiting oxidative stress and stomach inflammation.


Assuntos
Antiulcerosos , Mucosa Gástrica , Ranidae , Úlcera Gástrica , Animais , Camundongos , Antiulcerosos/efeitos adversos , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Colágeno/farmacologia , Etanol/toxicidade , Mucosa Gástrica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Substâncias Protetoras/efeitos adversos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , China , Modelos Animais de Doenças , Pele
14.
Molecules ; 28(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513352

RESUMO

Anneslea fragrans Wall., popularly known as "Pangpo tea", is an edible, medicinal, and ornamental plant of the Family Theaceae. The leaves of A. fragrans were historically applied for the treatment of liver and intestinal inflammatory diseases in China. This study aimed to explore the hepatoprotective agents from A. fragrans leaves through hepatoprotective and anti-inflammatory assessment. The phytochemical investigation of the leaves of A. fragrans resulted in the isolation and identification of a total of 18 chemical compounds, including triterpenoids, aliphatic alcohol, dihydrochalcones, chalcones, flavanols, phenolic glycoside, and lignans. Compounds 1-2, 4-6, 11-12, and 16-18 were identified from A. fragrans for the first time. Compounds 7 and 14 could significantly alleviate hepatocellular damage by decreasing the contents of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and inhibit the hepatocellular apoptosis in the HepG2 cells induced by N-acetyl-p-aminophenol (APAP). In addition, compounds 7 and 14 inhibited reactive oxygen species (ROS) and malondialdehyde (MDA) contents and increased the catalase (CAT) superoxide dismutase (SOD), and glutathione (GSH) levels for suppressing APAP-induced oxidative stress. Additionally, compounds 7, 13, and 14 also had significant anti-inflammatory effects by inhibiting interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) productions on LPS-induced RAW246.7 cells.


Assuntos
Antioxidantes , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Fígado , Substâncias Protetoras/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Glutationa/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Aspartato Aminotransferases/metabolismo , Alanina Transaminase/metabolismo
15.
Bioorg Chem ; 139: 106661, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37354662

RESUMO

Skeletal muscle atrophy, associated with increased morbidity, mortality and poor quality of life, is a metabolic disorder with no FDA approved drug. Oxidative stress is one of the key mediators of atrophy that influences various cell signaling molecules. The goal of this study is to identify potential antioxidant agents that could be used to treat atrophy. In this study in vitro and in situ screening of different cinnamaldehyde (CNA) derivatives for their antioxidant effects was done along with computational analysis to understand the relationship between their chemical structure and biological activity. Data show that 2-hydroxycinnamaldehyde (2HCNA) worked better than other CNA analogues at physiological pH, while 4-Fluoro-2-methoxycinnamaldehyde (4FoCNA) showed the maximum antioxidant activity under acidic conditions. However, these derivatives (2HCNA and 4FoCNA) were found to be toxic to the cultured myotubes (mature myofiber) under both physiological and pathophysiological conditions. Immunofluorescence, bright-field microscopic and biochemical studies conducted using live C2C12 cells showed that pre-incubation with other CNA analogues i.e. 2-methoxycinnamaldehyde (2MeCNA) and 2-benzyloxycinnamaldehyde (2BzCNA) not only maintained the normal morphology of myotubes but also protected them from H2O2-induced atrophy. These compounds (2MeCNA and 2BzCNA) showed higher stability and antioxidant potential, as indicated by computer simulation data analyzed by Density Functional Theory (DFT) based molecular modeling. Overall, the chemical, biological, and computational studies reveal the therapeutic potential of CNA analogues (BzCNA and MeCNA) against oxidative-stress induced muscle atrophy in C2C12 cells.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Humanos , Antioxidantes/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Simulação por Computador , Qualidade de Vida , Fibras Musculares Esqueléticas , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Estresse Oxidativo , Substâncias Protetoras/farmacologia
16.
Chem Biol Interact ; 381: 110575, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257576

RESUMO

Di-ethylhexyl phthalate (DEHP) is used as an important plasticizer in a wide range of products such as paints, food packaging, medical devices and children's toys. In recent years, there has been increasing interest in the toxic effects of DEHP on the male reproductive organs, the testicles. Here, we reviewed the basic pathways of testicular damage caused by DEHP. The mechanism involves oxidative stress, ferroptosis, interfering with hypothalamic-pituitary-gonadal axis (HPGA) and testosterone level. We summarized the protective agents that have been shown to be effective in repairing this type of testicular damage in recent years. This provides a new perspective and direction for future research into the health effects and molecular mechanisms of DEHP.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Doenças Testiculares , Criança , Masculino , Humanos , Dietilexilftalato/toxicidade , Testículo , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Doenças Testiculares/induzido quimicamente , Substâncias Protetoras/farmacologia , Substâncias Protetoras/metabolismo
17.
Food Funct ; 14(8): 3526-3537, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37014333

RESUMO

This study aimed to evaluate the hepatoprotective effects of peptides from Antarctic krill (AKP) on carbon tetrachloride (CCl4)-induced acute liver injury (ALI) in mice and the underlying molecular mechanisms. ICR mice were pretreated with AKP (500 mg kg-1, i.g.) and silybin (30 mg kg-1, i.g.) for 15 days before CCl4 (0.25 mL per kg BW, i.p.) injection. To assess hepatocellular damage and molecular indices, the serum and liver tissue were evaluated at harvest. The results showed that AKP pretreatment remarkably attenuated CCl4-induced liver injury, which was identified by the decrease in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), alleviation of hepatocyte necrosis, and inhibition of the levels of the pro-inflammatory factors TNF-α and IL-1ß compared to those for silymarin. AKP pretreatment also enhanced the redox balance by reducing the concentrations of MDA and 8-iso-PG and increasing the activities of SOD, GSH and GSH-PX in the liver of mice. In addition, AKP upregulated oxidative stress-related mRNA expressions of Nrf2, Keap1, HO-1, and NQO1 and further activated the protein expression on the Nrf2/HO-1 singling pathway. In summary, AKP might be a promising hepatoprotective nutraceutical against ALI and its underlying mechanisms are associated with activation of the Nrf2/HO-1 pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Euphausiacea , Hepatopatias , Camundongos , Animais , Tetracloreto de Carbono/efeitos adversos , Euphausiacea/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos ICR , Fígado/metabolismo , Estresse Oxidativo , Hepatopatias/metabolismo , Peptídeos/farmacologia
18.
Pharmacogenet Genomics ; 33(5): 111-115, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068004

RESUMO

With the scarcity of pharmacological otoprotective agents against cisplatin-induced ototoxicity (CIO), researchers find themselves compelled to look at and navigate all possible strategies to identify ways to prevent CIO. One of these promising strategies is pharmacogenomic implementation. This strategy aims for identifying and detecting high-risk genetic variants to tailor cisplatin therapy to reach the best survival outcomes with the least risk of ototoxicity.


Assuntos
Antineoplásicos , Ototoxicidade , Humanos , Cisplatino/efeitos adversos , Antineoplásicos/efeitos adversos , Ototoxicidade/genética , Ototoxicidade/tratamento farmacológico , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Farmacogenética
19.
Cancer Chemother Pharmacol ; 91(5): 389-400, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997656

RESUMO

PURPOSE: The mitochondria-targeted antioxidants (MTAs) are known to offer protection against mitochondrial oxidative stress. The recent evidences support their role in mitigating oxidative stress-induced diseases, including cancer. Therefore, this study investigated cardioprotective potential of mito-TEMPO against 5-FU-induced cardiotoxicity. METHODS: Mito-TEMPO was administered to male BALB/C mice (intraperitoneally, 0.1 mg/kg b.w. for 7 days) followed by intraperitoneal administration of 5- FU (12 mg/kg b.w. for 4 days). During this period, mito-TEMPO treatment was also continued. The cardioprotective potential of mito-TEMPO was assessed by evaluating cardiac injury markers, extent of non-viable myocardium and histopathological alterations. Mitochondrial functional status and mitochondrial oxidative stress were assessed in cardiac tissue. 8-OHdG expression and apoptotic cell death were assessed using immunohistochemical techniques. RESULTS: The level of cardiac injury markers CK-MB and AST were significantly (P ≤ 0.05) decreased in mito-TEMPO pre-protected group which was further reflected in histopathology as decrease in the percentage of non-viable myocardial tissue, disorganization, and loss of myofibrils. Mito-TEMPO ameliorated mtROS, mtLPO and conserved mitochondrial membrane potential. Further, it had significantly (P ≤ 0.05) improved the activity of mitochondrial complexes and mitochondrial enzymes. A significant (P ≤ 0.05) increase in the level of mtGSH, activity of mitochondrial glutathione reductase, glutathione peroxidase, and mitochondrial superoxide dismutase was observed. A decreased expression of 8-OHdG and reduced apoptotic cell death were observed in mito-TEMPO pre-protected group. CONCLUSION: Mito-TEMPO effectively mitigated 5-FU-induced cardiotoxicity by modulating mitochondrial oxidative stress, hence may serve as a protective agent/adjuvant in 5-FU-based combinatorial chemotherapy.


Assuntos
Antioxidantes , Cardiotoxicidade , Animais , Camundongos , Masculino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Camundongos Endogâmicos BALB C , Mitocôndrias , Substâncias Protetoras/farmacologia , Mitomicina , Estresse Oxidativo
20.
Sci Total Environ ; 875: 162672, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894106

RESUMO

Ozone (O3) pollution is a persistent environmental issue worldwide, which causes widespread damage to vegetation, deteriorating plant health and reducing plant productivity. Ethylenediurea (EDU) is a synthetic chemical that has been widely applied in scientific studies as a protectant against O3 phytotoxicities. Despite four decades of active research, the exact mechanisms to explain its mode of action remain unclear. Here, we aimed to reveal whether EDU's phytoprotective property is due to its control over stomatal regulation and/or its action as a nitrogen (N) fertilizer, utilizing stomatal-unresponsive plants of a hybrid poplar (Populus koreana × trichocarpa cv. Peace) grown in a free-air O3-concenctration enrichment (FACE) facility. Plants were treated with water (WAT), EDU (400 mg L-1), or EDU's constitutive amount of N every nine days, and exposed to ambient (AOZ) or elevated (EOZ) O3 during a growing season (June-September). EOZ led to extensive foliar injuries (but protected against rust disease), lower photosynthetic rate (A), impaired dynamics of responses of A to changes in light intensity, and smaller total plant leaf area. EDU protected against common phytotoxicities caused by EOZ without inducing stomatal closure, since stomatal conductance (gs) was generally unresponsive to the experimental treatments. EDU also modulated the dynamic response of A to light fluctuations under O3 stress. N addition acted as a fertilizer but did not satisfactorily protect plants against O3 phytotoxicities. The results suggest that EDU protects against O3 phytotoxicity not by adding N or controlling stomata, which provides a new insight into our understanding of the mode of action of EDU as a protectant against O3 phytotoxicity.


Assuntos
Poluentes Atmosféricos , Ozônio , Populus , Ozônio/toxicidade , Populus/fisiologia , Nitrogênio/farmacologia , Fertilizantes , Folhas de Planta , Fotossíntese/fisiologia , Substâncias Protetoras/farmacologia , Plantas , Poluentes Atmosféricos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA